End Semester - Fall, 2022-2023 M. Tech. Cryptology & Security Topics in Cryptology (Part-A only)

November 28, 2022

Maximum Marks: 50 Time: 3 hr (flexible) Open note/book Exam

Instructions

- Maximum marks is 50. Total marks provided in the paper: 60, among which Part-A contains 30 and Part-B contains 30.
- Use separate sheets for Part-A and Part-B and clearly mark on top of your answer sheets.
- You can use any book/notes during the exam, but not internet.

Part-A

Notations. The set $\{1, 2, 3, ...\}$ of all positive integers are denoted by \mathbb{N} . The set of all integers are denoted by \mathbb{Z} . The ring of all integers modulo n is denoted by \mathbb{Z}_n . Below $\kappa \in \mathbb{N}$ denotes the security parameter throughout (for example, if 128 bit security is desired from the system, then κ is set to 128, this is often equal to the key-length). For any randomized algorithm A we denote $y \leftarrow A(x)$. Sometimes such algorithms are determinized by making the randomness explicit as y := A(x; r). An inherently deterministic algorithm D is denoted as y := D(x). A uniform random sample from a domain D is denoted as $s \leftarrow_{\$} D$.

- 1. Consider the following language: given a cyclic group \mathbb{G} of prime order p, an instance of the language consists of the statement inst = (g, h, x, y) and witness wit = k such that $k = \mathsf{DLOG}_g(x) = \mathsf{DLOG}_h(y)$ (or alternatively $g^k = x$ and $h^k = y$).
 - (a) Write an Interactive proof system for the above language.
 - (b) Provide arguments for completeness, soundness and honest verifier zero knowledge.
 - (c) Can you transform it to one which is non-interactive and fully zero-knowledge? In that case, how do you argue soundness and full zero-knowledge?

(4+3+3=10)

- 2. Consider three parties A, B and C with private inputs $a, b, c \in \{0, 1\}$ respectively. They want to compute a function f = a.b + c over \mathbb{Z}_2 in a secure manner such that at the end of the protocol everyone should have f, but "nothing else".
 - (a) Design a protocol which is resilient to at most 1 corrupt party, who can have unbounded computational power.
 - (b) Provide security intuitions for the above protocol.

(c) What happens if there are more than 1 corrupt party? Show exactly where the protocol breaks down.

$$(6+2+2=10)$$

- 3. Consider the exact same setting as above: three parties A, B and C with private inputs $a, b, c \in \{0, 1\}$ respectively. They want to compute a function f = a.b + c over \mathbb{Z}_2 in a secure manner such that at the end of the protocol everyone should have f, but "nothing else".
 - (a) Design another protocol which is resilient to at most 2 corrupt parties, such that they are computationally bounded (can run at most $O(\mathsf{poly}(\kappa))$ time.
 - (b) Provide security intuition for the above protocol.
 - (c) What happens if corrupt parties can have unbounded computational power? Show exactly where the protocol breaks down.

(6+2+2=10)